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MODERN TOKAMAKS ARE RICH IN MHD ACTIVITY
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What is special about 2250 msec?

*What is the nature of the initial 3/2 island?

*Can this behavior be understood?

«Can this behavior be predicted?

NTM?

2/1 wall locking

Disruption




MODELING REQUIREMENTS

* Slow evolution, finite amplitude magnetic fluctuations

Nonlinear, multidimensional, electromagnetic fluid
model required

* Plasma shaping
Realistic geometry required
e High temperature
Realistic Srequired
* Low collisionality
Extensions to resistive MHD required
e Strong magnetic field
Highly anisotropic transport required
* Resistive wall
Non-ideal boundary conditions required




NIMROD APPLIED TO DIlI-D DISCHARGES

» Gain understanding of dynamics of modern tokamak
» Validate code by benchmarking with experimental data
« Shot 87009
— Highly shaped plasma
— Disruption when heated through b limit
 Why is growth faster than simple exponential?
 What causes disruption?
— Test of nonlinear resistive MHD
« Shot 86144
— ITER-like discharge
— Sawteeth
* Nonlinear generation of secondary islands
» Destabilization of NTM?
— Tests both resistive MHD and closure models for Extended MHD




DIlI-D SHOT #87009

* High-b disruption when heated
slowly through critical by

 Growth is faster than simple
exponential
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EQUILIBRIUM AT t = 1681.7 msec

Safety factor profile

* Equilibrium reconstruction o |
from experimental data

* Negative central shear °| |

» Gridding based on equilibrium e
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THEORY OF SUPER-EXPONENTIAL GROWTH

* In experiment mode grows faster than exponential

 Theory of ideal growth in response to slow heating (callen, Hegna,
Rice, Strait, and Turnbull, Phys. Plasmas 6, 2963 (1999)):

Heat slowly through critical b: B = b (1+0yt)
Ideal MHD: w® = -g\'\iHD(b /b, -1) = gt)=gwovInt

Perturbation growth:

dx
gt D9 P x=xeplt/)T], t=(3/2)" Guodn”

» Good agreement with experimental data




NONLINEAR SIMULATION WITH NIMROD

* Initial condition: equilibrium
below ideal marginal b, Log of magnetic energy in n =1 mode vs. time
« Use resistive MHD S =10° Pr =200 gy = 10° sec™

* Impose heating source
proportional to equilibrium
pressure profile
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e Follow nonlinear evolution
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SCALING WITH HEATING RATE

 NIMROD simulations also . . 3
display super-exponential Ogf%frrg?j?f?g'ecnfﬂi;%?'nvs' (t - 1o)
g rates
growth
e Simulation results with x~exp[(t-t )2 ~t~-g _*72q70%
different heating rates are well i AR A BRRAS RARAE A AR
fit by X~ exp[(t-to)/t] 3/2 14 -
« Time constant scales as - 57107 s
~g 072g S. 10 : / /‘/
MHD YH §E 8 /5 /
« Compare with theory: I /a/
6
=327 G0 N }/ /
» Discrepancy possibly due to i E/
non-ideal effects T T T
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EVOLUTION OF MAGNETIC FIELD LINES

e Simulation with small
but finite resistivity

*Ideal mode yields
stochastic field lines
In late nonlinear
stage

e Implications for
degraded
confinement

* Disruption?
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DIlI-D SHOT #86144
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*What is special about 2250 msec?

*What is the nature of the initial 3/2 island?
eCan this behavior be understood?

«Can this behavior be predicted?
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EQUILIBRIUM AT t = 2250 msec
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» ITER-like discharge

e q(0) slightly below 1




DISCHARGE IS UNSTABLE TO RESISTIVE MHD

n =1 linearly unstable Equilibrium
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SECONDARY ISLANDS IN RESISTIVE MHD
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e Secondary islands are small in resistive MHD
—W,,p, ~0.06 - 0.1 m

« 3/2 island width decreases with increasing S

* Need extended MHD to match experiment?

~40 50




NUMERICALLY TRACTABLE CLOSURES

* Resistive MHD is insufficient to explain DIII-D shot 86144
» 3/2 magnetic island is too small
» Parallel variation of B leads to trapped particle effects
 Particle trapping causes neo-classical effects
* Poloidal flow damping
« Enhancement of polarization current
* Bootstrap current
« Simplified model captures most neo-classical effects
(T. A. Gianakon, S. E. Kruger, C. C. Hegna, Phys. Plasmas (to appear) (2002) )
NxPg =mgng my <BO>2 2 >~Nq2 Ng
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* For electrons, ideal MHD equilibrium yields bootstrap current
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CLOSURES REPRODUCE NTM INSTABILITY

 TFTR-like equilibrium

° Comparison with 100§| _ lAnaIy‘lic;NlTI'u':stlabilitybtl::ur:dalryl |
modified Rutherford . T e ey
equation E 7

c 107F
=

e Initialize NIMROD with = v
various seed island E 102k
sizes [ '

e Look for growth or 1075

damping

» Seek self-consistent
seed and growth




86144.2250 NTM STABILITY BOUNDARIES

e Use modified
Rutherford equation

e 3 values of
anisotropic heat flux

e 2 values of D¢
— VYacuum

— Reduced by factor
of 10

* Experimental island
width ~0.06 - 0.1 m
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SELF-CONSISTENT NTM MAY REQUIRE HIGHER S

 Nonlinear simulation with

0.04_""|"'|""|"
NIMROD code = |a=10°W,=0020
» Look for 3/2 neoclassical E ; .
mode driven by 1/1 £ 0.03r $=10,0,=0.034 7
tooth S S=10°%3, ~0.023
Saw = R S — S=10",5 ~0.016 |
* Use PFD (analytic) closure - 0.02F | '
» Threshold island width ~2- g
4 cm (uncertainty in D) Lt A 151
*W,,~6-10cmin Che
experiment =
. Stl.|| need larger S, more e ——35 830
anisotropy Vo, b

Cannot cheat on parameters!!!
Nonlinear NTM calculations are extremely challenging!
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SUMMARY

* Nonlinear modeling of experimental discharges is possible, but
extremely challenging

e DIlI-D shot #87009
— Heating through b limit

— Super-exponential growth, in agreement with experiment and
theory

— Nonlinear state leads to stochastic fields

— Calculations with anisotropic thermal transport underway
 DIlI-D shot #86144

— Secondary islands driven by sawtooth crash

— Source of driven island still unresolved (NTM? RMHD?)

— Must go to large S (~107), large anisotropy (> 108) to get proper
length scales

e Calculations are underway
Realistic calculations require maximum resources




